Explanation by Doctors in Simple Terms: Why mRNA vaccines are a very bad idea

Readers of the D4CE website will be familiar with the atrocious safety record of the mRNA COVID vaccines produced by Pfizer and Moderna [1]. One striking feature is that adverse events occur not only after the first injection but also after every booster shot. In this short article, we will examine the reason for this observation.




Michael Palmer, MD and Sucharit Bhakdi, MD doctors4covidethics.org


How the mRNA COVID vaccines work

The Pfizer and Moderna mRNA vaccines consist of a synthetic messenger RNA (mRNA) that encodes the SARS-CoV-2 “spike protein,” which is normally found on the surface of the coronavirus particles. This mRNA is coated with a mixture of synthetic lipids—fat-like molecules—that protect it from degradation during transport within the body, and which also facilitate its uptake into the target cells through endocytosis.


After the vaccine particle has entered a cell, the lipids are stripped off, and the mRNA is released into the cytosol (the intracellular fluid). The mRNA then binds to ribosomes—the cell’s little protein factories—and directs them to synthesize the actual spike protein molecules. Most of the spike protein molecules will then be transported to the cell surface.


Sooner or later, cells that express this protein, or the remnants of such cells, will reach the organizational centers of the immune system in the lymphatic organs. The spike protein will then be recognized by various types of immune cells, including B-lymphocytes (B-cells), which will begin to make antibodies to it.

Furthermore, as with any protein that is synthesized within the cell, a small number of molecules will undergo fragmentation, and the fragments will be presented on the cell surface in association with specific (HLA-) carrier proteins.


The purpose of this mechanism is immune surveillance: as soon as fragments show up of some protein which the immune system does not recognize as “self,” that is, as belonging to the human body, an immune response will be mounted against any cells that produce it. This response will result in the formation of cytotoxic T-lymphocytes (T-killer cells) that attack and destroy the cells which present those antigen fragments.


The cytotoxic activity of the T-killer cells will be augmented by several other immune effector mechanisms that are initiated by the antibodies. If this combined immune attack happens to the cells that line the blood vessels—the endothelial cells—the resulting lesion may cause blood clotting. Stroke, heart attacks, and thromboses must be expected, and many such cases have indeed been reported as adverse events after vaccination with Pfizer’s and Moderna’s COVID-19 mRNA vaccines (as well as with the adenovirus-based vaccines produced by AstraZeneca and Johnson & Johnson).


These immunological mechanisms must be expected to operate with any other mRNA-encoded viral antigens. In the case of COVID19 vaccines, there is a second, unique pathway that connects expression of the spike protein to vascular disturbances. A centrally important part of the spike protein (the S1 fragment) can be cleaved off and released from the cell. The S1 fragment can then bind to blood platelets (thrombocytes) and to endothelial cells at remote sites, effecting their activation. This second pathway of triggering vessel damage and blood clots is specific for the SARS-CoV-2 spike protein.


How the immune system deals with natural viruses (or live vaccines)


CONTINUE READING

https://doctors4covidethics.org/elementary-my-dear-watson-why-mrna-vaccines-are-a-very-bad-idea/